Math 2050B, HW 5. Due: 30 Nov 2024, before 11:59 pm

(1) Show that $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \frac{1}{x^2 + 1}$$

is uniformly continuous by using ε - δ terminology.

- (2) Suppose $f : [0, +\infty) \to \mathbb{R}$ is a continuous function such that $f|_{[a,+\infty)}$ is uniformly continuous for some a > 0. Show that f is uniform continuous.
- (3) If $f, g : \mathbb{R} \to \mathbb{R}$ are two uniform continuous function, show that $f \circ g$ is also uniform continuous.
- (4) If $f : \mathbb{R} \to \mathbb{R}$ is a continuous function such that

$$\lim_{x \to +\infty} f(x) = L_1, \lim_{x \to -\infty} f(x) = L_2$$

for some L_i . If $f(0) > \max\{L_1, L_2\}$, show that there exists $\bar{x} \in \mathbb{R}$ such that $f(\bar{x}) \ge f(x)$ for all $x \in \mathbb{R}$.

- (5) Let A be a compact set in \mathbb{R} . Suppose $f : A \to \mathbb{R}$ is a real valued function such that for any $\varepsilon > 0$, there is a polynomial g_{ε} such that $\sup_{A} |f(x) g_{\varepsilon}(x)| < \varepsilon$. Show that f is uniformly continuous.
- (6) Suppose $f: (0, 1] \to \mathbb{R}$ is a bounded continuous function. Show that the function given by g(x) = xf(x) is uniformly continuous on (0, 1).